Heterogeneous Processing Systems

Heterogeneous Multiset of Homogeneous Arrays (Multi-multi-core)
Processing Heterogeneity

CPU (x86, SPARC, PowerPC)
GPU (AMD/ATI, NVIDIA)
DSP (TI, ADI)
Vector processors (Cray)
Systolic arrays (regaining interest)
String processors (XML engines)
DMA engines
Simple scalar processors (ARM, ARC)
Pattern matchers (CAM/CAS/anti-virus/mal-ware)
Fixed function devices (LAN acceleration, streaming video display)
FPGA supported functionalities
Memory Interface Heterogeneity

Multiple types of memory interface:
- SRAM.
- DRAM.
- Content addressable memory.
- Transactional.
- Stable atomic.
- Active (in-memory operations supported).

Multiple concurrent coherency models:
- Fully coherent.
- Semi-coherent.
- Non-coherent.

Multiple coherency domains.

FPGA supported/created functionalities.
Homogeneity

Zero or more instances of each processor and/or memory type may be present in a given system.

A given solution (application) may desire:

Many different types of processing and/or memory elements.

Many instances of the same type of processing and/or memory element.

Multiple instances of multiple types of processing and/or memory elements.
Different Type of Reconfigurable Computing

HPC has history of building systems to run specific types of applications.

Multi-multi-core creates opportunity to tune virtual server configurations to application requirements.

- Applications written to maximize performance via adoption of assumption of multi-multi-core
- Servers constructed on application specific basis.
- Fast virtual servers get dedicated/shared hardware resources.
- Slow virtual servers emulate multi-multi-core on reduced resource systems.

Dynamic core/hardware assignment.

- System image has stubs that are linked to real hardware when needed.
- System image has access to load balanced work queues.
Sun (SPARC guys) and Symbolics (Lisp guys)

How far can the pendulum swing away from:
 Standard hardware architectures?
 Standard software architectures?

Dedicated hardware is faster than general purpose hardware?

Historic deltas between full-custom, AISCs, and FPGAs is diminishing?
 Latency?
 Bandwidth?
 Density?
 Power consumption?

Multi-core will become multi-multi-core?
 Software implications
 - System initialization
 - Operating System
 - Tool support
 - Language integration
 - Programming model

Overlapping core functionality
 - ADI and TI in same system?
 - X86 and PowerPC in the same system?

Will cost of hardware/software infrastructure force coalescence around a richer, but still very limited number of core types and implementations?
Real Challenge

Specification of generalized communication/messaging model between subsystems.

Specification of para-virtual system level shared memory model for hardware components:
 - Physical.
 - Guest physical.
 - Guest virtual.

Alternatives to current interrupt “sledge-hammer”
 - Improved hardware interrupt models for sequestered cores?
 - New OS interrupt models?
 - Multi-threaded polling architectures?

Can computer science reverse its direction as a pure software science?
 Will computer engineers be the future of “hard-core” system level programming?

What is the desired future software level interface:
 - MPI?
 - Sockets?
 - CORBA?
 - ?
Processing Models

Directed processing
One processing subsystem is tightly controlled by another processing subsystem.
Example: graphics.

Proxied processing
Processing subsystem is tied to remote program behavior, but highly autonomous in operation.
Example: full TCP/IP stack offload.

Peer processing
Processors interact, but each subsystem operates independently of the other.
Example: front-end web, back-end data-base processing
Inter-Processor Communication

Generally, a processor’s I/O is limited to read and write operations. Actions must be address and/or data oriented.

Concepts apply equally to homo and heterogeneous communication.

None of these concepts are mutually-exclusive

Control
 Stream of execution
 Pre-emptive (interrupt)
 Co-operative

Metadata
 Register
 Message queue
 Cache-line messaging

Data
 System memory
 Special purpose memory
 Register
 Cache
Start-up Requirements

Initialization
 Booting all the pieces
 Usurpation of authority (emperor crowns itself)
 - Hypervisor/VM/VMM initialized.
 - Order imposed.

Discovery
 Fixed logic
 Reconfigurable logic
 - Fixed set of dynamically assignable profiles.
 - Functionally dynamic, assignable hardware resource.
 - System does not understand functionality beyond ability to assign resource to virtual server.

Allocation
 Creation of virtual servers within physical server.
 Hard partitioning of non-shareable resources.
 Protection of shareable resources.
Interconnect Model
Intra-Subsystem / Inter-Subsystem / Subsystem to Memory

Homogeneous interconnect

Heterogeneous interconnect

Create distinction between homogeneous and heterogeneous?
 GPU/GPU conundrum.

Shared memory

Partitioned memory

Shared and partitioned memory

Coherency
 Cache effects

Virtualization
 Paging
 Hypervisor/VM
I/O Model

What is I/O in multi-multi-core environment?

Shared I/O.
 Intelligent / off-load models.
 - I/O becomes fixed function sub-system.
 IOV (I/O virtualization).
 - Partitioned multi-function devices.

Dedicated I/O.
 IOV (I/O virtualization).
 - Partitioned multi-function devices.

Ethernet hegemony.
 I/O == Ethernet.
 How far into the box does Ethernet extend?
 Ethernet as new graphics interface.
iSCSI as EIDE/SATA/SAS/SCSI/FibreChannel replacement.
Impact of intelligent chameleon like logical interfaces to physical Ethernet based tunneling interfaces.
Programming Model

Compiler based multi-multi-core.
 Homogeneous.
 Heterogeneous.
 Explicit.
 Implicit.

Library based multi-multi-core.

Previous problems relatively easy compared to this one.

Can multi-multi-core programming model ever become practically useful?
 Restricted set of functionalities folded into standard system software components (libraries, compilers, assemblers, linkers, run-time systems).
 Pray for painless death if your problem is outside addressed multi-multi-core integration solutions.
AMD is interested in addressing the issues associated with multi-multi-core computing.

AMD has no interest in operating in a vacuum as it addresses these problems.

AMD is soliciting your input.

Should not be confused with an invitation to fund your research.

- Dr. David Mayhew
- d.mayhew@charter.net